Useful Formulae in Advanced Level Physics

A1. \(a = \frac{v^2}{r} = \omega^2 r \) centripetal acceleration

A2. \(a = \omega^2 \chi \) simple harmonic motion

A3. \(L = I \omega \) angular momentum of a rigid body

A4. \(T = \frac{dL}{dt} \) torque on a rotating body

A5. \(E = \frac{1}{2} I \omega^2 \) energy stored in a rotating body

B1. \(v = \sqrt{\frac{T}{m}} \) velocity of transverse wave motion in a stretched string

B2. \(v = \sqrt{\frac{E}{\rho}} \) velocity of longitudinal wave motion in a solid

B3. \(n = \tan \theta_p \) refractive index and polarizing angle

B4. \(d = \frac{\lambda D}{a} \) fringe width in double-slit interference

B5. \(d \sin \theta = n \lambda \) diffraction grating equation

B6. \(f' = f \left(\frac{V - u_0}{V - u_s} \right) \) Doppler frequency

B7. \(10 \log_{10} \left(\frac{I_2}{I_1} \right) \) definition of the decibel

C1. \(F = \frac{Gm_1 m_2}{r^2} \) Newton’s law of gravitation

C2. \(V = \frac{GM}{r} \) gravitational potential

C3. \(r^3 / T^2 = \text{constant} \) Kepler’s third law

C4. \(E = \frac{Q}{4\pi \varepsilon_0 r^2} \) electric field due to a point charge

C5. \(V = \frac{Q}{4\pi \varepsilon_0 r} \) electric potential due a point charge
C6. \(E = \frac{V}{d} \)
 electric field between parallel plates (numerically)

C7. \(C = \frac{Q}{V} = \frac{\varepsilon_0 A}{d} \)
 capacitance of a parallel-plate capacitor

C8. \(Q = Q_0 e^{-t/RC} \)
 decay of charge with time when a capacitor discharges

C9. \(Q = Q_0(1 - e^{-t/RC}) \)
 rise of charge with time when charging a capacitor

C10. \(E = \frac{1}{2} CV^2 \)
 energy stored in a capacitor

C11. \(I = n A \nu Q \)
 general current flow equation

C12. \(R = \frac{\rho l}{A} \)
 resistance and resistivity

C13. \(F = BQ \nu \sin \theta \)
 force on a moving charge in a magnetic field

C14. \(F = BI \nu \sin \theta \)
 force on a current carrying a conductor in a magnetic field

C15. \(V = \frac{BI}{nQt} \)
 Hall voltage

C16. \(B = \frac{\mu_0 I}{2\pi r} \)
 magnetic field inside a long straight wire

C17. \(B = \frac{\mu_0 NI}{l} \)
 magnetic field inside long solenoid

C18. \(F = \frac{\mu_0 I_1 I_2}{2\pi r} \)
 force per unit length between long parallel straight current carrying conductors

C19. \(T = BAN \sin \phi \)
 torque on a rectangular current carrying coil in a uniform magnetic field

C20. \(E = BAN \omega \sin \omega t \)
 simple generator e.m.f.

C21. \(\frac{V_s}{V_p} \approx \frac{N_s}{N_p} \)
 ratio of secondary voltage to primary voltage in a transformer

C22. \(E = -\frac{LdI}{dt} \)
 e.m.f. induced in an inductor

C23. \(E = \frac{1}{2} LI^2 \)
 energy stored in an inductor

C24. \(X_L = \omega L \)
 reactance of an inductor
C25. \[X_c = \frac{1}{\omega C} \] reactance of a capacitor

C26. \[P = IV\cos \theta \] power in an a.c. circuit

C27. \[\frac{\Delta V_{\text{out}}}{\Delta V_{\text{in}}} = \beta \frac{R_f}{R_b} \] voltage gain of transistor amplifier in the common emitter configuration

C28. \[V_o = A_o(V_+ - V_-) \] output voltage of op amp (open-loop)

C29. \[A = -\frac{R_f}{R_i} \] gain of inverting amplifier

C30. \[A = 1 + \frac{R_f}{R_i} \] gain of non-inverting amplifier

D1. \[pV = nRT = NkT \] equation of state for an ideal gas

D2. \[pV = \frac{1}{3} N m c^2 \] kinetic theory equation

D3. \[E_k = \frac{3}{2} \frac{RT}{N_A} = \frac{3}{2} kT \] molecular kinetic energy

D4. \[E = \frac{F}{A} \frac{x}{L} \] macroscopic definition of Young modulus

D5. \[E = \frac{1}{2} Fx \] energy stored in stretching

D6. \[F = -\frac{dU}{dr} \] relationship between force and potential energy

D7. \[E = k / r \] microscopic interpretation of Young modulus

D8. \[P + \frac{1}{2} \rho v^2 + \rho gh = \text{constant} \] Bernoulli’s equation

D9. \[\Delta U = Q + W \] first law of thermodynamics

D10. \[E_n = -\frac{13.6}{n^2} eV \] energy level equation for hydrogen atom

D11. \[N = N_0 e^{-kt} \] law of radioactive decay

D12. \[t_{\frac{1}{2}} = \frac{\ln 2}{k} \] half-life and decay constant
D13. \(\frac{1}{2} m v_m^2 = h\nu - \phi \)
Einstein’s photoelectric equation

D14. \(E = mc^2 \)
mass-energy relationship